This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Non-quantified consequences of a left module homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmlem.k | ⊢ 𝐾 = ( Scalar ‘ 𝑆 ) | |
| lmhmlem.l | ⊢ 𝐿 = ( Scalar ‘ 𝑇 ) | ||
| Assertion | lmhmlem | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlem.k | ⊢ 𝐾 = ( Scalar ‘ 𝑆 ) | |
| 2 | lmhmlem.l | ⊢ 𝐿 = ( Scalar ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 5 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 6 | eqid | ⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) | |
| 7 | 1 2 3 4 5 6 | islmhm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐾 ) ∀ 𝑏 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 8 | 3simpa | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐾 ) ∀ 𝑏 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ) ) | |
| 9 | 8 | anim2i | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐾 ) ∀ 𝑏 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) ) → ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ) ) ) |
| 10 | 7 9 | sylbi | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( 𝑆 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐿 = 𝐾 ) ) ) |