This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | llnset.b | |- B = ( Base ` K ) |
|
| llnset.c | |- C = ( |
||
| llnset.a | |- A = ( Atoms ` K ) |
||
| llnset.n | |- N = ( LLines ` K ) |
||
| Assertion | islln | |- ( K e. D -> ( X e. N <-> ( X e. B /\ E. p e. A p C X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | llnset.b | |- B = ( Base ` K ) |
|
| 2 | llnset.c | |- C = ( |
|
| 3 | llnset.a | |- A = ( Atoms ` K ) |
|
| 4 | llnset.n | |- N = ( LLines ` K ) |
|
| 5 | 1 2 3 4 | llnset | |- ( K e. D -> N = { x e. B | E. p e. A p C x } ) |
| 6 | 5 | eleq2d | |- ( K e. D -> ( X e. N <-> X e. { x e. B | E. p e. A p C x } ) ) |
| 7 | breq2 | |- ( x = X -> ( p C x <-> p C X ) ) |
|
| 8 | 7 | rexbidv | |- ( x = X -> ( E. p e. A p C x <-> E. p e. A p C X ) ) |
| 9 | 8 | elrab | |- ( X e. { x e. B | E. p e. A p C x } <-> ( X e. B /\ E. p e. A p C X ) ) |
| 10 | 6 9 | bitrdi | |- ( K e. D -> ( X e. N <-> ( X e. B /\ E. p e. A p C X ) ) ) |