This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a lattice". (Contributed by NM, 18-Oct-2012) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islat.b | |- B = ( Base ` K ) |
|
| islat.j | |- .\/ = ( join ` K ) |
||
| islat.m | |- ./\ = ( meet ` K ) |
||
| Assertion | islat | |- ( K e. Lat <-> ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islat.b | |- B = ( Base ` K ) |
|
| 2 | islat.j | |- .\/ = ( join ` K ) |
|
| 3 | islat.m | |- ./\ = ( meet ` K ) |
|
| 4 | fveq2 | |- ( l = K -> ( join ` l ) = ( join ` K ) ) |
|
| 5 | 4 2 | eqtr4di | |- ( l = K -> ( join ` l ) = .\/ ) |
| 6 | 5 | dmeqd | |- ( l = K -> dom ( join ` l ) = dom .\/ ) |
| 7 | fveq2 | |- ( l = K -> ( Base ` l ) = ( Base ` K ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( l = K -> ( Base ` l ) = B ) |
| 9 | 8 | sqxpeqd | |- ( l = K -> ( ( Base ` l ) X. ( Base ` l ) ) = ( B X. B ) ) |
| 10 | 6 9 | eqeq12d | |- ( l = K -> ( dom ( join ` l ) = ( ( Base ` l ) X. ( Base ` l ) ) <-> dom .\/ = ( B X. B ) ) ) |
| 11 | fveq2 | |- ( l = K -> ( meet ` l ) = ( meet ` K ) ) |
|
| 12 | 11 3 | eqtr4di | |- ( l = K -> ( meet ` l ) = ./\ ) |
| 13 | 12 | dmeqd | |- ( l = K -> dom ( meet ` l ) = dom ./\ ) |
| 14 | 13 9 | eqeq12d | |- ( l = K -> ( dom ( meet ` l ) = ( ( Base ` l ) X. ( Base ` l ) ) <-> dom ./\ = ( B X. B ) ) ) |
| 15 | 10 14 | anbi12d | |- ( l = K -> ( ( dom ( join ` l ) = ( ( Base ` l ) X. ( Base ` l ) ) /\ dom ( meet ` l ) = ( ( Base ` l ) X. ( Base ` l ) ) ) <-> ( dom .\/ = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) ) |
| 16 | df-lat | |- Lat = { l e. Poset | ( dom ( join ` l ) = ( ( Base ` l ) X. ( Base ` l ) ) /\ dom ( meet ` l ) = ( ( Base ` l ) X. ( Base ` l ) ) ) } |
|
| 17 | 15 16 | elrab2 | |- ( K e. Lat <-> ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) ) |