This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive the usual definition of "compactly generated". A topology is compactly generated if every subset of X that is open in every compact subset is open. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iskgen3.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | iskgen3 | ⊢ ( 𝐽 ∈ ran 𝑘Gen ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) → 𝑥 ∈ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iskgen3.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | iskgen2 | ⊢ ( 𝐽 ∈ ran 𝑘Gen ↔ ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ) | |
| 3 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 | elkgen | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) ) | |
| 5 | 3 4 | sylbi | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) ) |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 | elpw | ⊢ ( 𝑥 ∈ 𝒫 𝑋 ↔ 𝑥 ⊆ 𝑋 ) |
| 8 | 7 | anbi1i | ⊢ ( ( 𝑥 ∈ 𝒫 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ↔ ( 𝑥 ⊆ 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) |
| 9 | 5 8 | bitr4di | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ↔ ( 𝑥 ∈ 𝒫 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) ) ) |
| 10 | 9 | imbi1d | ⊢ ( 𝐽 ∈ Top → ( ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) → 𝑥 ∈ 𝐽 ) ↔ ( ( 𝑥 ∈ 𝒫 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) → 𝑥 ∈ 𝐽 ) ) ) |
| 11 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝒫 𝑋 ∧ ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) ) → 𝑥 ∈ 𝐽 ) ↔ ( 𝑥 ∈ 𝒫 𝑋 → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) → 𝑥 ∈ 𝐽 ) ) ) | |
| 12 | 10 11 | bitrdi | ⊢ ( 𝐽 ∈ Top → ( ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) → 𝑥 ∈ 𝐽 ) ↔ ( 𝑥 ∈ 𝒫 𝑋 → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) → 𝑥 ∈ 𝐽 ) ) ) ) |
| 13 | 12 | albidv | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) → 𝑥 ∈ 𝐽 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝑋 → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) → 𝑥 ∈ 𝐽 ) ) ) ) |
| 14 | df-ss | ⊢ ( ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) → 𝑥 ∈ 𝐽 ) ) | |
| 15 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝒫 𝑋 ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) → 𝑥 ∈ 𝐽 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝒫 𝑋 → ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) → 𝑥 ∈ 𝐽 ) ) ) | |
| 16 | 13 14 15 | 3bitr4g | ⊢ ( 𝐽 ∈ Top → ( ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ↔ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) → 𝑥 ∈ 𝐽 ) ) ) |
| 17 | 16 | pm5.32i | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) → 𝑥 ∈ 𝐽 ) ) ) |
| 18 | 2 17 | bitri | ⊢ ( 𝐽 ∈ ran 𝑘Gen ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝒫 𝑋 ( ∀ 𝑘 ∈ 𝒫 𝑋 ( ( 𝐽 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝐽 ↾t 𝑘 ) ) → 𝑥 ∈ 𝐽 ) ) ) |