This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hmoval.8 | |- H = ( HmOp ` U ) |
|
| hmoval.9 | |- A = ( U adj U ) |
||
| Assertion | ishmo | |- ( U e. NrmCVec -> ( T e. H <-> ( T e. dom A /\ ( A ` T ) = T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmoval.8 | |- H = ( HmOp ` U ) |
|
| 2 | hmoval.9 | |- A = ( U adj U ) |
|
| 3 | 1 2 | hmoval | |- ( U e. NrmCVec -> H = { t e. dom A | ( A ` t ) = t } ) |
| 4 | 3 | eleq2d | |- ( U e. NrmCVec -> ( T e. H <-> T e. { t e. dom A | ( A ` t ) = t } ) ) |
| 5 | fveq2 | |- ( t = T -> ( A ` t ) = ( A ` T ) ) |
|
| 6 | id | |- ( t = T -> t = T ) |
|
| 7 | 5 6 | eqeq12d | |- ( t = T -> ( ( A ` t ) = t <-> ( A ` T ) = T ) ) |
| 8 | 7 | elrab | |- ( T e. { t e. dom A | ( A ` t ) = t } <-> ( T e. dom A /\ ( A ` T ) = T ) ) |
| 9 | 4 8 | bitrdi | |- ( U e. NrmCVec -> ( T e. H <-> ( T e. dom A /\ ( A ` T ) = T ) ) ) |