This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " B is finer than A ". (Contributed by Jeff Hankins, 11-Oct-2009) (Proof shortened by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfne.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| isfne.2 | ⊢ 𝑌 = ∪ 𝐵 | ||
| Assertion | isfne3 | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfne.1 | ⊢ 𝑋 = ∪ 𝐴 | |
| 2 | isfne.2 | ⊢ 𝑌 = ∪ 𝐵 | |
| 3 | 1 2 | isfne4 | ⊢ ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ) |
| 4 | dfss3 | ⊢ ( 𝐴 ⊆ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( topGen ‘ 𝐵 ) ) | |
| 5 | eltg3 | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) | |
| 6 | 5 | ralbidv | ⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
| 7 | 4 6 | bitrid | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ⊆ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) |
| 8 | 7 | anbi2d | ⊢ ( 𝐵 ∈ 𝐶 → ( ( 𝑋 = 𝑌 ∧ 𝐴 ⊆ ( topGen ‘ 𝐵 ) ) ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) ) |
| 9 | 3 8 | bitrid | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 Fne 𝐵 ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦 ) ) ) ) |