This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " B is finer than A ". (Contributed by Jeff Hankins, 11-Oct-2009) (Proof shortened by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfne.1 | |- X = U. A |
|
| isfne.2 | |- Y = U. B |
||
| Assertion | isfne3 | |- ( B e. C -> ( A Fne B <-> ( X = Y /\ A. x e. A E. y ( y C_ B /\ x = U. y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfne.1 | |- X = U. A |
|
| 2 | isfne.2 | |- Y = U. B |
|
| 3 | 1 2 | isfne4 | |- ( A Fne B <-> ( X = Y /\ A C_ ( topGen ` B ) ) ) |
| 4 | dfss3 | |- ( A C_ ( topGen ` B ) <-> A. x e. A x e. ( topGen ` B ) ) |
|
| 5 | eltg3 | |- ( B e. C -> ( x e. ( topGen ` B ) <-> E. y ( y C_ B /\ x = U. y ) ) ) |
|
| 6 | 5 | ralbidv | |- ( B e. C -> ( A. x e. A x e. ( topGen ` B ) <-> A. x e. A E. y ( y C_ B /\ x = U. y ) ) ) |
| 7 | 4 6 | bitrid | |- ( B e. C -> ( A C_ ( topGen ` B ) <-> A. x e. A E. y ( y C_ B /\ x = U. y ) ) ) |
| 8 | 7 | anbi2d | |- ( B e. C -> ( ( X = Y /\ A C_ ( topGen ` B ) ) <-> ( X = Y /\ A. x e. A E. y ( y C_ B /\ x = U. y ) ) ) ) |
| 9 | 3 8 | bitrid | |- ( B e. C -> ( A Fne B <-> ( X = Y /\ A. x e. A E. y ( y C_ B /\ x = U. y ) ) ) ) |