This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adomain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-domn | ⊢ Domn = { 𝑟 ∈ NzRing ∣ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdomn | ⊢ Domn | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cnzr | ⊢ NzRing | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑟 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑟 ) |
| 6 | vb | ⊢ 𝑏 | |
| 7 | c0g | ⊢ 0g | |
| 8 | 4 7 | cfv | ⊢ ( 0g ‘ 𝑟 ) |
| 9 | vz | ⊢ 𝑧 | |
| 10 | vx | ⊢ 𝑥 | |
| 11 | 6 | cv | ⊢ 𝑏 |
| 12 | vy | ⊢ 𝑦 | |
| 13 | 10 | cv | ⊢ 𝑥 |
| 14 | cmulr | ⊢ .r | |
| 15 | 4 14 | cfv | ⊢ ( .r ‘ 𝑟 ) |
| 16 | 12 | cv | ⊢ 𝑦 |
| 17 | 13 16 15 | co | ⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) |
| 18 | 9 | cv | ⊢ 𝑧 |
| 19 | 17 18 | wceq | ⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 |
| 20 | 13 18 | wceq | ⊢ 𝑥 = 𝑧 |
| 21 | 16 18 | wceq | ⊢ 𝑦 = 𝑧 |
| 22 | 20 21 | wo | ⊢ ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) |
| 23 | 19 22 | wi | ⊢ ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
| 24 | 23 12 11 | wral | ⊢ ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
| 25 | 24 10 11 | wral | ⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
| 26 | 25 9 8 | wsbc | ⊢ [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
| 27 | 26 6 5 | wsbc | ⊢ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) |
| 28 | 27 1 2 | crab | ⊢ { 𝑟 ∈ NzRing ∣ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) } |
| 29 | 0 28 | wceq | ⊢ Domn = { 𝑟 ∈ NzRing ∣ [ ( Base ‘ 𝑟 ) / 𝑏 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = 𝑧 → ( 𝑥 = 𝑧 ∨ 𝑦 = 𝑧 ) ) } |