This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006) Use isbn instead. (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscbn.x | |- X = ( BaseSet ` U ) |
|
| iscbn.8 | |- D = ( IndMet ` U ) |
||
| Assertion | iscbn | |- ( U e. CBan <-> ( U e. NrmCVec /\ D e. ( CMet ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscbn.x | |- X = ( BaseSet ` U ) |
|
| 2 | iscbn.8 | |- D = ( IndMet ` U ) |
|
| 3 | fveq2 | |- ( u = U -> ( IndMet ` u ) = ( IndMet ` U ) ) |
|
| 4 | 3 2 | eqtr4di | |- ( u = U -> ( IndMet ` u ) = D ) |
| 5 | fveq2 | |- ( u = U -> ( BaseSet ` u ) = ( BaseSet ` U ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( u = U -> ( BaseSet ` u ) = X ) |
| 7 | 6 | fveq2d | |- ( u = U -> ( CMet ` ( BaseSet ` u ) ) = ( CMet ` X ) ) |
| 8 | 4 7 | eleq12d | |- ( u = U -> ( ( IndMet ` u ) e. ( CMet ` ( BaseSet ` u ) ) <-> D e. ( CMet ` X ) ) ) |
| 9 | df-cbn | |- CBan = { u e. NrmCVec | ( IndMet ` u ) e. ( CMet ` ( BaseSet ` u ) ) } |
|
| 10 | 8 9 | elrab2 | |- ( U e. CBan <-> ( U e. NrmCVec /\ D e. ( CMet ` X ) ) ) |