This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function restricted to a class A is empty iff the class A is empty. (Contributed by AV, 30-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iresn0n0 | |- ( A = (/) <-> ( _I |` A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opab0 | |- ( { <. x , y >. | ( x e. A /\ y = x ) } = (/) <-> A. x A. y -. ( x e. A /\ y = x ) ) |
|
| 2 | opabresid | |- ( _I |` A ) = { <. x , y >. | ( x e. A /\ y = x ) } |
|
| 3 | 2 | eqeq1i | |- ( ( _I |` A ) = (/) <-> { <. x , y >. | ( x e. A /\ y = x ) } = (/) ) |
| 4 | nel02 | |- ( A = (/) -> -. x e. A ) |
|
| 5 | 4 | intnanrd | |- ( A = (/) -> -. ( x e. A /\ y = x ) ) |
| 6 | 5 | alrimivv | |- ( A = (/) -> A. x A. y -. ( x e. A /\ y = x ) ) |
| 7 | ianor | |- ( -. ( x e. A /\ y = x ) <-> ( -. x e. A \/ -. y = x ) ) |
|
| 8 | 7 | albii | |- ( A. y -. ( x e. A /\ y = x ) <-> A. y ( -. x e. A \/ -. y = x ) ) |
| 9 | 19.32v | |- ( A. y ( -. x e. A \/ -. y = x ) <-> ( -. x e. A \/ A. y -. y = x ) ) |
|
| 10 | id | |- ( -. x e. A -> -. x e. A ) |
|
| 11 | ax6v | |- -. A. y -. y = x |
|
| 12 | 11 | pm2.21i | |- ( A. y -. y = x -> -. x e. A ) |
| 13 | 10 12 | jaoi | |- ( ( -. x e. A \/ A. y -. y = x ) -> -. x e. A ) |
| 14 | 9 13 | sylbi | |- ( A. y ( -. x e. A \/ -. y = x ) -> -. x e. A ) |
| 15 | 8 14 | sylbi | |- ( A. y -. ( x e. A /\ y = x ) -> -. x e. A ) |
| 16 | 15 | alimi | |- ( A. x A. y -. ( x e. A /\ y = x ) -> A. x -. x e. A ) |
| 17 | eq0 | |- ( A = (/) <-> A. x -. x e. A ) |
|
| 18 | 16 17 | sylibr | |- ( A. x A. y -. ( x e. A /\ y = x ) -> A = (/) ) |
| 19 | 6 18 | impbii | |- ( A = (/) <-> A. x A. y -. ( x e. A /\ y = x ) ) |
| 20 | 1 3 19 | 3bitr4ri | |- ( A = (/) <-> ( _I |` A ) = (/) ) |