This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The GLB of the empty set is the union of the base. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipoglb0.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| ipoglb0.g | ⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐼 ) ) | ||
| ipoglb0.f | ⊢ ( 𝜑 → ∪ 𝐹 ∈ 𝐹 ) | ||
| Assertion | ipoglb0 | ⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = ∪ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipoglb0.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| 2 | ipoglb0.g | ⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐼 ) ) | |
| 3 | ipoglb0.f | ⊢ ( 𝜑 → ∪ 𝐹 ∈ 𝐹 ) | |
| 4 | uniexr | ⊢ ( ∪ 𝐹 ∈ 𝐹 → 𝐹 ∈ V ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 6 | 0ss | ⊢ ∅ ⊆ 𝐹 | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ∅ ⊆ 𝐹 ) |
| 8 | ssv | ⊢ 𝑥 ⊆ V | |
| 9 | int0 | ⊢ ∩ ∅ = V | |
| 10 | 8 9 | sseqtrri | ⊢ 𝑥 ⊆ ∩ ∅ |
| 11 | 10 | a1i | ⊢ ( 𝑥 ∈ 𝐹 → 𝑥 ⊆ ∩ ∅ ) |
| 12 | 11 | rabeqc | ⊢ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ ∅ } = 𝐹 |
| 13 | 12 | unieqi | ⊢ ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ ∅ } = ∪ 𝐹 |
| 14 | 13 | eqcomi | ⊢ ∪ 𝐹 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ ∅ } |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ∪ 𝐹 = ∪ { 𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ ∅ } ) |
| 16 | 1 5 7 2 15 3 | ipoglb | ⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = ∪ 𝐹 ) |