This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The GLB of the empty set is the union of the base. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipoglb0.i | |- I = ( toInc ` F ) |
|
| ipoglb0.g | |- ( ph -> G = ( glb ` I ) ) |
||
| ipoglb0.f | |- ( ph -> U. F e. F ) |
||
| Assertion | ipoglb0 | |- ( ph -> ( G ` (/) ) = U. F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipoglb0.i | |- I = ( toInc ` F ) |
|
| 2 | ipoglb0.g | |- ( ph -> G = ( glb ` I ) ) |
|
| 3 | ipoglb0.f | |- ( ph -> U. F e. F ) |
|
| 4 | uniexr | |- ( U. F e. F -> F e. _V ) |
|
| 5 | 3 4 | syl | |- ( ph -> F e. _V ) |
| 6 | 0ss | |- (/) C_ F |
|
| 7 | 6 | a1i | |- ( ph -> (/) C_ F ) |
| 8 | ssv | |- x C_ _V |
|
| 9 | int0 | |- |^| (/) = _V |
|
| 10 | 8 9 | sseqtrri | |- x C_ |^| (/) |
| 11 | 10 | a1i | |- ( x e. F -> x C_ |^| (/) ) |
| 12 | 11 | rabeqc | |- { x e. F | x C_ |^| (/) } = F |
| 13 | 12 | unieqi | |- U. { x e. F | x C_ |^| (/) } = U. F |
| 14 | 13 | eqcomi | |- U. F = U. { x e. F | x C_ |^| (/) } |
| 15 | 14 | a1i | |- ( ph -> U. F = U. { x e. F | x C_ |^| (/) } ) |
| 16 | 1 5 7 2 15 3 | ipoglb | |- ( ph -> ( G ` (/) ) = U. F ) |