This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of iotaval using df-iota instead of dfiota2 . (Contributed by SN, 6-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotaval2 | |- ( { x | ph } = { y } -> ( iota x ph ) = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iota | |- ( iota x ph ) = U. { w | { x | ph } = { w } } |
|
| 2 | eqeq1 | |- ( { x | ph } = { y } -> ( { x | ph } = { w } <-> { y } = { w } ) ) |
|
| 3 | sneqbg | |- ( y e. _V -> ( { y } = { w } <-> y = w ) ) |
|
| 4 | 3 | elv | |- ( { y } = { w } <-> y = w ) |
| 5 | equcom | |- ( y = w <-> w = y ) |
|
| 6 | 4 5 | bitri | |- ( { y } = { w } <-> w = y ) |
| 7 | 2 6 | bitrdi | |- ( { x | ph } = { y } -> ( { x | ph } = { w } <-> w = y ) ) |
| 8 | 7 | alrimiv | |- ( { x | ph } = { y } -> A. w ( { x | ph } = { w } <-> w = y ) ) |
| 9 | uniabio | |- ( A. w ( { x | ph } = { w } <-> w = y ) -> U. { w | { x | ph } = { w } } = y ) |
|
| 10 | 8 9 | syl | |- ( { x | ph } = { y } -> U. { w | { x | ph } = { w } } = y ) |
| 11 | 1 10 | eqtrid | |- ( { x | ph } = { y } -> ( iota x ph ) = y ) |