This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence between two different forms of iota . (Contributed by Andrew Salmon, 15-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotain | ⊢ ( ∃! 𝑥 𝜑 → ∩ { 𝑥 ∣ 𝜑 } = ( ℩ 𝑥 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 2 | intsn | ⊢ ∩ { 𝑦 } = 𝑦 |
| 4 | abbi | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝑥 = 𝑦 } ) | |
| 5 | df-sn | ⊢ { 𝑦 } = { 𝑥 ∣ 𝑥 = 𝑦 } | |
| 6 | 4 5 | eqtr4di | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
| 7 | 6 | inteqd | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∩ { 𝑥 ∣ 𝜑 } = ∩ { 𝑦 } ) |
| 8 | iotaval | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ℩ 𝑥 𝜑 ) = 𝑦 ) | |
| 9 | 3 7 8 | 3eqtr4a | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∩ { 𝑥 ∣ 𝜑 } = ( ℩ 𝑥 𝜑 ) ) |
| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ∩ { 𝑥 ∣ 𝜑 } = ( ℩ 𝑥 𝜑 ) ) |
| 11 | 1 10 | sylbi | ⊢ ( ∃! 𝑥 𝜑 → ∩ { 𝑥 ∣ 𝜑 } = ( ℩ 𝑥 𝜑 ) ) |