This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence between two different forms of iota . (Contributed by Andrew Salmon, 15-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotain | |- ( E! x ph -> |^| { x | ph } = ( iota x ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 | |- ( E! x ph <-> E. y A. x ( ph <-> x = y ) ) |
|
| 2 | vex | |- y e. _V |
|
| 3 | 2 | intsn | |- |^| { y } = y |
| 4 | abbi | |- ( A. x ( ph <-> x = y ) -> { x | ph } = { x | x = y } ) |
|
| 5 | df-sn | |- { y } = { x | x = y } |
|
| 6 | 4 5 | eqtr4di | |- ( A. x ( ph <-> x = y ) -> { x | ph } = { y } ) |
| 7 | 6 | inteqd | |- ( A. x ( ph <-> x = y ) -> |^| { x | ph } = |^| { y } ) |
| 8 | iotaval | |- ( A. x ( ph <-> x = y ) -> ( iota x ph ) = y ) |
|
| 9 | 3 7 8 | 3eqtr4a | |- ( A. x ( ph <-> x = y ) -> |^| { x | ph } = ( iota x ph ) ) |
| 10 | 9 | exlimiv | |- ( E. y A. x ( ph <-> x = y ) -> |^| { x | ph } = ( iota x ph ) ) |
| 11 | 1 10 | sylbi | |- ( E! x ph -> |^| { x | ph } = ( iota x ph ) ) |