This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for two open intervals not to be disjoint. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioondisj2 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll1 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ* ) | |
| 2 | simpll2 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ* ) | |
| 3 | simplr1 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → 𝐶 ∈ ℝ* ) | |
| 4 | simplr2 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → 𝐷 ∈ ℝ* ) | |
| 5 | iooin | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) = ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) (,) if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) = ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) (,) if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) ) |
| 7 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → 𝐷 ≤ 𝐵 ) | |
| 8 | xrmineq | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐷 ≤ 𝐵 ) → if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) = 𝐷 ) | |
| 9 | 2 4 7 8 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) = 𝐷 ) |
| 10 | 9 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) (,) if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) = ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) (,) 𝐷 ) ) |
| 11 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ∧ 𝐴 ≤ 𝐶 ) → 𝐴 ≤ 𝐶 ) | |
| 12 | 11 | iftrued | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ∧ 𝐴 ≤ 𝐶 ) → if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) = 𝐶 ) |
| 13 | simplr3 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → 𝐶 < 𝐷 ) | |
| 14 | 13 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ∧ 𝐴 ≤ 𝐶 ) → 𝐶 < 𝐷 ) |
| 15 | 12 14 | eqbrtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ∧ 𝐴 ≤ 𝐶 ) → if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) < 𝐷 ) |
| 16 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝐶 ) → ¬ 𝐴 ≤ 𝐶 ) | |
| 17 | 16 | iffalsed | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝐶 ) → if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) = 𝐴 ) |
| 18 | simplrl | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝐶 ) → 𝐴 < 𝐷 ) | |
| 19 | 17 18 | eqbrtrd | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝐶 ) → if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) < 𝐷 ) |
| 20 | 15 19 | pm2.61dan | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) < 𝐷 ) |
| 21 | 3 1 | ifcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) ∈ ℝ* ) |
| 22 | ioon0 | ⊢ ( ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) → ( ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) (,) 𝐷 ) ≠ ∅ ↔ if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) < 𝐷 ) ) | |
| 23 | 21 4 22 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → ( ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) (,) 𝐷 ) ≠ ∅ ↔ if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) < 𝐷 ) ) |
| 24 | 20 23 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) (,) 𝐷 ) ≠ ∅ ) |
| 25 | 10 24 | eqnetrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) (,) if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) ≠ ∅ ) |
| 26 | 6 25 | eqnetrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 < 𝐷 ∧ 𝐷 ≤ 𝐵 ) ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) ≠ ∅ ) |