This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for two open intervals not to be disjoint. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioondisj1 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll1 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → 𝐴 ∈ ℝ* ) | |
| 2 | simpll2 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → 𝐵 ∈ ℝ* ) | |
| 3 | simplr1 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → 𝐶 ∈ ℝ* ) | |
| 4 | simplr2 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → 𝐷 ∈ ℝ* ) | |
| 5 | iooin | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) = ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) (,) if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) = ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) (,) if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) ) |
| 7 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → 𝐴 ≤ 𝐶 ) | |
| 8 | 7 | iftrued | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) = 𝐶 ) |
| 9 | 8 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) (,) if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) = ( 𝐶 (,) if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) ) |
| 10 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → 𝐶 < 𝐵 ) | |
| 11 | simplr3 | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → 𝐶 < 𝐷 ) | |
| 12 | 10 11 | jca | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → ( 𝐶 < 𝐵 ∧ 𝐶 < 𝐷 ) ) |
| 13 | xrltmin | ⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) → ( 𝐶 < if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ↔ ( 𝐶 < 𝐵 ∧ 𝐶 < 𝐷 ) ) ) | |
| 14 | 3 2 4 13 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → ( 𝐶 < if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ↔ ( 𝐶 < 𝐵 ∧ 𝐶 < 𝐷 ) ) ) |
| 15 | 12 14 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → 𝐶 < if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) |
| 16 | 2 4 | ifcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ∈ ℝ* ) |
| 17 | ioon0 | ⊢ ( ( 𝐶 ∈ ℝ* ∧ if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ∈ ℝ* ) → ( ( 𝐶 (,) if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) ≠ ∅ ↔ 𝐶 < if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) ) | |
| 18 | 3 16 17 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → ( ( 𝐶 (,) if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) ≠ ∅ ↔ 𝐶 < if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) ) |
| 19 | 15 18 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → ( 𝐶 (,) if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) ≠ ∅ ) |
| 20 | 9 19 | eqnetrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → ( if ( 𝐴 ≤ 𝐶 , 𝐶 , 𝐴 ) (,) if ( 𝐵 ≤ 𝐷 , 𝐵 , 𝐷 ) ) ≠ ∅ ) |
| 21 | 6 20 | eqnetrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵 ) ) → ( ( 𝐴 (,) 𝐵 ) ∩ ( 𝐶 (,) 𝐷 ) ) ≠ ∅ ) |