This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | remet.1 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| Assertion | ioo2blex | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,) 𝐵 ) ∈ ran ( ball ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remet.1 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 2 | 1 | ioo2bl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,) 𝐵 ) = ( ( ( 𝐴 + 𝐵 ) / 2 ) ( ball ‘ 𝐷 ) ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 3 | 1 | rexmet | ⊢ 𝐷 ∈ ( ∞Met ‘ ℝ ) |
| 4 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) | |
| 5 | 4 | rehalfcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ) |
| 6 | resubcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 8 | 7 | rehalfcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ℝ ) |
| 9 | 8 | rexrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ℝ* ) |
| 10 | blelrn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℝ ) ∧ ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ∧ ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ℝ* ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) ( ball ‘ 𝐷 ) ( ( 𝐵 − 𝐴 ) / 2 ) ) ∈ ran ( ball ‘ 𝐷 ) ) | |
| 11 | 3 5 9 10 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) ( ball ‘ 𝐷 ) ( ( 𝐵 − 𝐴 ) / 2 ) ) ∈ ran ( ball ‘ 𝐷 ) ) |
| 12 | 2 11 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 (,) 𝐵 ) ∈ ran ( ball ‘ 𝐷 ) ) |