This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that an intersection with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 16-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inxpss | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑆 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp2 | ⊢ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 𝑅 𝑦 ) ) | |
| 2 | 1 | imbi1i | ⊢ ( ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 → 𝑥 𝑆 𝑦 ) ↔ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 𝑅 𝑦 ) → 𝑥 𝑆 𝑦 ) ) |
| 3 | impexp | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 𝑅 𝑦 ) → 𝑥 𝑆 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 → 𝑥 𝑆 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) ) |
| 5 | 4 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) ) |
| 6 | relinxp | ⊢ Rel ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) | |
| 7 | ssrel3 | ⊢ ( Rel ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) → ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑆 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 → 𝑥 𝑆 𝑦 ) ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑆 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 → 𝑥 𝑆 𝑦 ) ) |
| 9 | r2al | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) ) | |
| 10 | 5 8 9 | 3bitr4i | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑆 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝑅 𝑦 → 𝑥 𝑆 𝑦 ) ) |