This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If G is an inverse to F , then F is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invfval.b | ||
| invfval.n | |||
| invfval.c | |||
| invss.x | |||
| invss.y | |||
| isoval.n | |||
| inviso1.1 | |||
| Assertion | inviso1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | ||
| 2 | invfval.n | ||
| 3 | invfval.c | ||
| 4 | invss.x | ||
| 5 | invss.y | ||
| 6 | isoval.n | ||
| 7 | inviso1.1 | ||
| 8 | 1 2 3 4 5 | invfun | |
| 9 | funrel | ||
| 10 | 8 9 | syl | |
| 11 | releldm | ||
| 12 | 10 7 11 | syl2anc | |
| 13 | 1 2 3 4 5 6 | isoval | |
| 14 | 12 13 | eleqtrrd |