This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intmin4 | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) } = ∩ { 𝑥 ∣ 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintab | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝐴 ⊆ 𝑥 ) ) | |
| 2 | simpr | ⊢ ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝜑 ) | |
| 3 | ancr | ⊢ ( ( 𝜑 → 𝐴 ⊆ 𝑥 ) → ( 𝜑 → ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) ) ) | |
| 4 | 2 3 | impbid2 | ⊢ ( ( 𝜑 → 𝐴 ⊆ 𝑥 ) → ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) ↔ 𝜑 ) ) |
| 5 | 4 | imbi1d | ⊢ ( ( 𝜑 → 𝐴 ⊆ 𝑥 ) → ( ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ↔ ( 𝜑 → 𝑦 ∈ 𝑥 ) ) ) |
| 6 | 5 | alimi | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝐴 ⊆ 𝑥 ) → ∀ 𝑥 ( ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ↔ ( 𝜑 → 𝑦 ∈ 𝑥 ) ) ) |
| 7 | albi | ⊢ ( ∀ 𝑥 ( ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ↔ ( 𝜑 → 𝑦 ∈ 𝑥 ) ) → ( ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑦 ∈ 𝑥 ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝐴 ⊆ 𝑥 ) → ( ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑦 ∈ 𝑥 ) ) ) |
| 9 | 1 8 | sylbi | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } → ( ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑦 ∈ 𝑥 ) ) ) |
| 10 | vex | ⊢ 𝑦 ∈ V | |
| 11 | 10 | elintab | ⊢ ( 𝑦 ∈ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) } ↔ ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) ) |
| 12 | 10 | elintab | ⊢ ( 𝑦 ∈ ∩ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝜑 → 𝑦 ∈ 𝑥 ) ) |
| 13 | 9 11 12 | 3bitr4g | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } → ( 𝑦 ∈ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) } ↔ 𝑦 ∈ ∩ { 𝑥 ∣ 𝜑 } ) ) |
| 14 | 13 | eqrdv | ⊢ ( 𝐴 ⊆ ∩ { 𝑥 ∣ 𝜑 } → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ 𝜑 ) } = ∩ { 𝑥 ∣ 𝜑 } ) |