This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intmin4 | |- ( A C_ |^| { x | ph } -> |^| { x | ( A C_ x /\ ph ) } = |^| { x | ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintab | |- ( A C_ |^| { x | ph } <-> A. x ( ph -> A C_ x ) ) |
|
| 2 | simpr | |- ( ( A C_ x /\ ph ) -> ph ) |
|
| 3 | ancr | |- ( ( ph -> A C_ x ) -> ( ph -> ( A C_ x /\ ph ) ) ) |
|
| 4 | 2 3 | impbid2 | |- ( ( ph -> A C_ x ) -> ( ( A C_ x /\ ph ) <-> ph ) ) |
| 5 | 4 | imbi1d | |- ( ( ph -> A C_ x ) -> ( ( ( A C_ x /\ ph ) -> y e. x ) <-> ( ph -> y e. x ) ) ) |
| 6 | 5 | alimi | |- ( A. x ( ph -> A C_ x ) -> A. x ( ( ( A C_ x /\ ph ) -> y e. x ) <-> ( ph -> y e. x ) ) ) |
| 7 | albi | |- ( A. x ( ( ( A C_ x /\ ph ) -> y e. x ) <-> ( ph -> y e. x ) ) -> ( A. x ( ( A C_ x /\ ph ) -> y e. x ) <-> A. x ( ph -> y e. x ) ) ) |
|
| 8 | 6 7 | syl | |- ( A. x ( ph -> A C_ x ) -> ( A. x ( ( A C_ x /\ ph ) -> y e. x ) <-> A. x ( ph -> y e. x ) ) ) |
| 9 | 1 8 | sylbi | |- ( A C_ |^| { x | ph } -> ( A. x ( ( A C_ x /\ ph ) -> y e. x ) <-> A. x ( ph -> y e. x ) ) ) |
| 10 | vex | |- y e. _V |
|
| 11 | 10 | elintab | |- ( y e. |^| { x | ( A C_ x /\ ph ) } <-> A. x ( ( A C_ x /\ ph ) -> y e. x ) ) |
| 12 | 10 | elintab | |- ( y e. |^| { x | ph } <-> A. x ( ph -> y e. x ) ) |
| 13 | 9 11 12 | 3bitr4g | |- ( A C_ |^| { x | ph } -> ( y e. |^| { x | ( A C_ x /\ ph ) } <-> y e. |^| { x | ph } ) ) |
| 14 | 13 | eqrdv | |- ( A C_ |^| { x | ph } -> |^| { x | ( A C_ x /\ ph ) } = |^| { x | ph } ) |