This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the initial object function, i.e. the set of all initial objects of a category. (Contributed by AV, 3-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initoval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| initoval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| initoval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | initoval | ⊢ ( 𝜑 → ( InitO ‘ 𝐶 ) = { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | initoval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | initoval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | df-inito | ⊢ InitO = ( 𝑐 ∈ Cat ↦ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ) | |
| 5 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) | |
| 6 | 5 2 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 7 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) | |
| 8 | 7 3 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐻 ) |
| 9 | 8 | oveqd | ⊢ ( 𝑐 = 𝐶 → ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) = ( 𝑎 𝐻 𝑏 ) ) |
| 10 | 9 | eleq2d | ⊢ ( 𝑐 = 𝐶 → ( ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) ↔ ℎ ∈ ( 𝑎 𝐻 𝑏 ) ) ) |
| 11 | 10 | eubidv | ⊢ ( 𝑐 = 𝐶 → ( ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) ↔ ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) ) ) |
| 12 | 6 11 | raleqbidv | ⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) ↔ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) ) ) |
| 13 | 6 12 | rabeqbidv | ⊢ ( 𝑐 = 𝐶 → { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } = { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) } ) |
| 14 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 15 | 14 | rabex | ⊢ { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) } ∈ V |
| 16 | 15 | a1i | ⊢ ( 𝜑 → { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) } ∈ V ) |
| 17 | 4 13 1 16 | fvmptd3 | ⊢ ( 𝜑 → ( InitO ‘ 𝐶 ) = { 𝑎 ∈ 𝐵 ∣ ∀ 𝑏 ∈ 𝐵 ∃! ℎ ℎ ∈ ( 𝑎 𝐻 𝑏 ) } ) |