This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An object A is said to be an initial object provided that for each object B there is exactly one morphism from A to B. Definition 7.1 in Adamek p. 101, or definition in Lang p. 57 (called "a universally repelling object" there). See dfinito2 and dfinito3 for alternate definitions depending on df-termo . See dfinito4 for an alternate definition using the universal property. (Contributed by AV, 3-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-inito | ⊢ InitO = ( 𝑐 ∈ Cat ↦ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cinito | ⊢ InitO | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | ccat | ⊢ Cat | |
| 3 | va | ⊢ 𝑎 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑐 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑐 ) |
| 7 | vb | ⊢ 𝑏 | |
| 8 | vh | ⊢ ℎ | |
| 9 | 8 | cv | ⊢ ℎ |
| 10 | 3 | cv | ⊢ 𝑎 |
| 11 | chom | ⊢ Hom | |
| 12 | 5 11 | cfv | ⊢ ( Hom ‘ 𝑐 ) |
| 13 | 7 | cv | ⊢ 𝑏 |
| 14 | 10 13 12 | co | ⊢ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) |
| 15 | 9 14 | wcel | ⊢ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) |
| 16 | 15 8 | weu | ⊢ ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) |
| 17 | 16 7 6 | wral | ⊢ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) |
| 18 | 17 3 6 | crab | ⊢ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } |
| 19 | 1 2 18 | cmpt | ⊢ ( 𝑐 ∈ Cat ↦ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ) |
| 20 | 0 19 | wceq | ⊢ InitO = ( 𝑐 ∈ Cat ↦ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ) |