This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sets with empty base are the only initial objects in the category of small categories. Example 7.2(3) of Adamek p. 101. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | initc | ⊢ ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ↔ ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑑 ∈ Cat ) → 𝐶 ∈ V ) | |
| 2 | simplr | ⊢ ( ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑑 ∈ Cat ) → ∅ = ( Base ‘ 𝐶 ) ) | |
| 3 | simpr | ⊢ ( ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑑 ∈ Cat ) → 𝑑 ∈ Cat ) | |
| 4 | 1 2 3 | 0funcg | ⊢ ( ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑑 ∈ Cat ) → ( 𝐶 Func 𝑑 ) = { 〈 ∅ , ∅ 〉 } ) |
| 5 | opex | ⊢ 〈 ∅ , ∅ 〉 ∈ V | |
| 6 | sneq | ⊢ ( 𝑓 = 〈 ∅ , ∅ 〉 → { 𝑓 } = { 〈 ∅ , ∅ 〉 } ) | |
| 7 | 6 | eqeq2d | ⊢ ( 𝑓 = 〈 ∅ , ∅ 〉 → ( ( 𝐶 Func 𝑑 ) = { 𝑓 } ↔ ( 𝐶 Func 𝑑 ) = { 〈 ∅ , ∅ 〉 } ) ) |
| 8 | 5 7 | spcev | ⊢ ( ( 𝐶 Func 𝑑 ) = { 〈 ∅ , ∅ 〉 } → ∃ 𝑓 ( 𝐶 Func 𝑑 ) = { 𝑓 } ) |
| 9 | 4 8 | syl | ⊢ ( ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑑 ∈ Cat ) → ∃ 𝑓 ( 𝐶 Func 𝑑 ) = { 𝑓 } ) |
| 10 | eusn | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) ↔ ∃ 𝑓 ( 𝐶 Func 𝑑 ) = { 𝑓 } ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑑 ∈ Cat ) → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) ) |
| 12 | 11 | ralrimiva | ⊢ ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) → ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) ) |
| 13 | 0cat | ⊢ ∅ ∈ Cat | |
| 14 | oveq2 | ⊢ ( 𝑑 = ∅ → ( 𝐶 Func 𝑑 ) = ( 𝐶 Func ∅ ) ) | |
| 15 | 14 | eleq2d | ⊢ ( 𝑑 = ∅ → ( 𝑓 ∈ ( 𝐶 Func 𝑑 ) ↔ 𝑓 ∈ ( 𝐶 Func ∅ ) ) ) |
| 16 | 15 | eubidv | ⊢ ( 𝑑 = ∅ → ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) ↔ ∃! 𝑓 𝑓 ∈ ( 𝐶 Func ∅ ) ) ) |
| 17 | 16 | rspcv | ⊢ ( ∅ ∈ Cat → ( ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func ∅ ) ) ) |
| 18 | 13 17 | ax-mp | ⊢ ( ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) → ∃! 𝑓 𝑓 ∈ ( 𝐶 Func ∅ ) ) |
| 19 | euex | ⊢ ( ∃! 𝑓 𝑓 ∈ ( 𝐶 Func ∅ ) → ∃ 𝑓 𝑓 ∈ ( 𝐶 Func ∅ ) ) | |
| 20 | funcrcl | ⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → ( 𝐶 ∈ Cat ∧ ∅ ∈ Cat ) ) | |
| 21 | 20 | simpld | ⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → 𝐶 ∈ Cat ) |
| 22 | 21 | elexd | ⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → 𝐶 ∈ V ) |
| 23 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 24 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 25 | eqidd | ⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → ∅ = ∅ ) | |
| 26 | id | ⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → 𝑓 ∈ ( 𝐶 Func ∅ ) ) | |
| 27 | 23 24 25 26 | func0g2 | ⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → ( Base ‘ 𝐶 ) = ∅ ) |
| 28 | 27 | eqcomd | ⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → ∅ = ( Base ‘ 𝐶 ) ) |
| 29 | 22 28 | jca | ⊢ ( 𝑓 ∈ ( 𝐶 Func ∅ ) → ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ) |
| 30 | 29 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐶 Func ∅ ) → ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ) |
| 31 | 18 19 30 | 3syl | ⊢ ( ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) → ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ) |
| 32 | 12 31 | impbii | ⊢ ( ( 𝐶 ∈ V ∧ ∅ = ( Base ‘ 𝐶 ) ) ↔ ∀ 𝑑 ∈ Cat ∃! 𝑓 𝑓 ∈ ( 𝐶 Func 𝑑 ) ) |