This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate expression for the infimum. (Contributed by AV, 2-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | infexd.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| Assertion | infval | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infexd.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | df-inf | ⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) | |
| 3 | cnvso | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) | |
| 4 | 1 3 | sylib | ⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
| 5 | 4 | supval2 | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | 6 7 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) |
| 10 | 9 | notbid | ⊢ ( 𝜑 → ( ¬ 𝑥 ◡ 𝑅 𝑦 ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
| 12 | 7 6 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
| 14 | vex | ⊢ 𝑧 ∈ V | |
| 15 | 7 14 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) ) |
| 17 | 16 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ↔ ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) |
| 18 | 13 17 | imbi12d | ⊢ ( 𝜑 → ( ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ↔ ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) |
| 19 | 18 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) |
| 20 | 11 19 | anbi12d | ⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ) |
| 21 | 20 | riotabidv | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ) |
| 22 | 5 21 | eqtrd | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ) |
| 23 | 2 22 | eqtrid | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ) |