This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an infinite set A is included in the underlying set of a finite cover B , then there exists a set of the cover that contains an infinite number of element of A . (Contributed by FL, 2-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infssuni | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 ⊆ ∪ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfral2 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝐴 ∩ 𝑥 ) ∈ Fin ↔ ¬ ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) | |
| 2 | iunfi | ⊢ ( ( 𝐵 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐴 ∩ 𝑥 ) ∈ Fin ) → ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∩ 𝑥 ) ∈ Fin ) | |
| 3 | iunin2 | ⊢ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∩ 𝑥 ) = ( 𝐴 ∩ ∪ 𝑥 ∈ 𝐵 𝑥 ) | |
| 4 | 3 | eleq1i | ⊢ ( ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∩ 𝑥 ) ∈ Fin ↔ ( 𝐴 ∩ ∪ 𝑥 ∈ 𝐵 𝑥 ) ∈ Fin ) |
| 5 | uniiun | ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
| 6 | 5 | eqcomi | ⊢ ∪ 𝑥 ∈ 𝐵 𝑥 = ∪ 𝐵 |
| 7 | 6 | ineq2i | ⊢ ( 𝐴 ∩ ∪ 𝑥 ∈ 𝐵 𝑥 ) = ( 𝐴 ∩ ∪ 𝐵 ) |
| 8 | 7 | eleq1i | ⊢ ( ( 𝐴 ∩ ∪ 𝑥 ∈ 𝐵 𝑥 ) ∈ Fin ↔ ( 𝐴 ∩ ∪ 𝐵 ) ∈ Fin ) |
| 9 | dfss2 | ⊢ ( 𝐴 ⊆ ∪ 𝐵 ↔ ( 𝐴 ∩ ∪ 𝐵 ) = 𝐴 ) | |
| 10 | eleq1 | ⊢ ( ( 𝐴 ∩ ∪ 𝐵 ) = 𝐴 → ( ( 𝐴 ∩ ∪ 𝐵 ) ∈ Fin ↔ 𝐴 ∈ Fin ) ) | |
| 11 | pm2.24 | ⊢ ( 𝐴 ∈ Fin → ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) ) | |
| 12 | 10 11 | biimtrdi | ⊢ ( ( 𝐴 ∩ ∪ 𝐵 ) = 𝐴 → ( ( 𝐴 ∩ ∪ 𝐵 ) ∈ Fin → ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) ) ) |
| 13 | 9 12 | sylbi | ⊢ ( 𝐴 ⊆ ∪ 𝐵 → ( ( 𝐴 ∩ ∪ 𝐵 ) ∈ Fin → ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) ) ) |
| 14 | 13 | com12 | ⊢ ( ( 𝐴 ∩ ∪ 𝐵 ) ∈ Fin → ( 𝐴 ⊆ ∪ 𝐵 → ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) ) ) |
| 15 | 8 14 | sylbi | ⊢ ( ( 𝐴 ∩ ∪ 𝑥 ∈ 𝐵 𝑥 ) ∈ Fin → ( 𝐴 ⊆ ∪ 𝐵 → ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) ) ) |
| 16 | 4 15 | sylbi | ⊢ ( ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∩ 𝑥 ) ∈ Fin → ( 𝐴 ⊆ ∪ 𝐵 → ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) ) ) |
| 17 | 2 16 | syl | ⊢ ( ( 𝐵 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐴 ∩ 𝑥 ) ∈ Fin ) → ( 𝐴 ⊆ ∪ 𝐵 → ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) ) ) |
| 18 | 17 | ex | ⊢ ( 𝐵 ∈ Fin → ( ∀ 𝑥 ∈ 𝐵 ( 𝐴 ∩ 𝑥 ) ∈ Fin → ( 𝐴 ⊆ ∪ 𝐵 → ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) ) ) ) |
| 19 | 18 | com24 | ⊢ ( 𝐵 ∈ Fin → ( ¬ 𝐴 ∈ Fin → ( 𝐴 ⊆ ∪ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝐴 ∩ 𝑥 ) ∈ Fin → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) ) ) ) |
| 20 | 19 | 3imp21 | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 ⊆ ∪ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝐴 ∩ 𝑥 ) ∈ Fin → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) ) |
| 21 | 1 20 | biimtrrid | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 ⊆ ∪ 𝐵 ) → ( ¬ ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) ) |
| 22 | 21 | pm2.18d | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 ⊆ ∪ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ¬ ( 𝐴 ∩ 𝑥 ) ∈ Fin ) |