This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infssd.0 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| infssd.1 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) | ||
| infssd.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐶 𝑧 𝑅 𝑦 ) ) ) | ||
| infssd.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) | ||
| Assertion | infssd | ⊢ ( 𝜑 → ¬ inf ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infssd.0 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | infssd.1 | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) | |
| 3 | infssd.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐶 𝑧 𝑅 𝑦 ) ) ) | |
| 4 | infssd.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) | |
| 5 | 1 4 | infcl | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
| 6 | 2 | sseld | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵 ) ) |
| 7 | 1 4 | inflb | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 → ¬ 𝑧 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| 8 | 6 7 | syld | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐶 → ¬ 𝑧 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| 9 | 8 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐶 ¬ 𝑧 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) |
| 10 | 1 3 | infnlb | ⊢ ( 𝜑 → ( ( inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐶 ¬ 𝑧 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) → ¬ inf ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
| 11 | 5 9 10 | mp2and | ⊢ ( 𝜑 → ¬ inf ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) |