This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound is not greater than the infimum. (Contributed by AV, 3-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infcl.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| infcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) | ||
| Assertion | infnlb | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝐶 ) → ¬ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcl.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | infcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) | |
| 3 | 1 2 | infglb | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝐶 ) ) |
| 4 | 3 | expdimp | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝐶 ) ) |
| 5 | dfrex2 | ⊢ ( ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝐶 ↔ ¬ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝐶 ) | |
| 6 | 4 5 | imbitrdi | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 → ¬ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝐶 ) ) |
| 7 | 6 | con2d | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝐶 → ¬ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) ) |
| 8 | 7 | expimpd | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝐶 ) → ¬ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) ) |