This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infssd.0 | |- ( ph -> R Or A ) |
|
| infssd.1 | |- ( ph -> C C_ B ) |
||
| infssd.3 | |- ( ph -> E. x e. A ( A. y e. C -. y R x /\ A. y e. A ( x R y -> E. z e. C z R y ) ) ) |
||
| infssd.4 | |- ( ph -> E. x e. A ( A. y e. B -. y R x /\ A. y e. A ( x R y -> E. z e. B z R y ) ) ) |
||
| Assertion | infssd | |- ( ph -> -. inf ( C , A , R ) R inf ( B , A , R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infssd.0 | |- ( ph -> R Or A ) |
|
| 2 | infssd.1 | |- ( ph -> C C_ B ) |
|
| 3 | infssd.3 | |- ( ph -> E. x e. A ( A. y e. C -. y R x /\ A. y e. A ( x R y -> E. z e. C z R y ) ) ) |
|
| 4 | infssd.4 | |- ( ph -> E. x e. A ( A. y e. B -. y R x /\ A. y e. A ( x R y -> E. z e. B z R y ) ) ) |
|
| 5 | 1 4 | infcl | |- ( ph -> inf ( B , A , R ) e. A ) |
| 6 | 2 | sseld | |- ( ph -> ( z e. C -> z e. B ) ) |
| 7 | 1 4 | inflb | |- ( ph -> ( z e. B -> -. z R inf ( B , A , R ) ) ) |
| 8 | 6 7 | syld | |- ( ph -> ( z e. C -> -. z R inf ( B , A , R ) ) ) |
| 9 | 8 | ralrimiv | |- ( ph -> A. z e. C -. z R inf ( B , A , R ) ) |
| 10 | 1 3 | infnlb | |- ( ph -> ( ( inf ( B , A , R ) e. A /\ A. z e. C -. z R inf ( B , A , R ) ) -> -. inf ( C , A , R ) R inf ( B , A , R ) ) ) |
| 11 | 5 9 10 | mp2and | |- ( ph -> -. inf ( C , A , R ) R inf ( B , A , R ) ) |