This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound is not greater than the infimum. (Contributed by AV, 3-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infcl.1 | |- ( ph -> R Or A ) |
|
| infcl.2 | |- ( ph -> E. x e. A ( A. y e. B -. y R x /\ A. y e. A ( x R y -> E. z e. B z R y ) ) ) |
||
| Assertion | infnlb | |- ( ph -> ( ( C e. A /\ A. z e. B -. z R C ) -> -. inf ( B , A , R ) R C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infcl.1 | |- ( ph -> R Or A ) |
|
| 2 | infcl.2 | |- ( ph -> E. x e. A ( A. y e. B -. y R x /\ A. y e. A ( x R y -> E. z e. B z R y ) ) ) |
|
| 3 | 1 2 | infglb | |- ( ph -> ( ( C e. A /\ inf ( B , A , R ) R C ) -> E. z e. B z R C ) ) |
| 4 | 3 | expdimp | |- ( ( ph /\ C e. A ) -> ( inf ( B , A , R ) R C -> E. z e. B z R C ) ) |
| 5 | dfrex2 | |- ( E. z e. B z R C <-> -. A. z e. B -. z R C ) |
|
| 6 | 4 5 | imbitrdi | |- ( ( ph /\ C e. A ) -> ( inf ( B , A , R ) R C -> -. A. z e. B -. z R C ) ) |
| 7 | 6 | con2d | |- ( ( ph /\ C e. A ) -> ( A. z e. B -. z R C -> -. inf ( B , A , R ) R C ) ) |
| 8 | 7 | expimpd | |- ( ph -> ( ( C e. A /\ A. z e. B -. z R C ) -> -. inf ( B , A , R ) R C ) ) |