This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infltoreq.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| infltoreq.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | ||
| infltoreq.3 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| infltoreq.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | ||
| infltoreq.5 | ⊢ ( 𝜑 → 𝑆 = inf ( 𝐵 , 𝐴 , 𝑅 ) ) | ||
| Assertion | infltoreq | ⊢ ( 𝜑 → ( 𝑆 𝑅 𝐶 ∨ 𝐶 = 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infltoreq.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | infltoreq.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 3 | infltoreq.3 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 4 | infltoreq.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | |
| 5 | infltoreq.5 | ⊢ ( 𝜑 → 𝑆 = inf ( 𝐵 , 𝐴 , 𝑅 ) ) | |
| 6 | cnvso | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) | |
| 7 | 1 6 | sylib | ⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
| 8 | df-inf | ⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) | |
| 9 | 5 8 | eqtrdi | ⊢ ( 𝜑 → 𝑆 = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ) |
| 10 | 7 2 3 4 9 | supgtoreq | ⊢ ( 𝜑 → ( 𝐶 ◡ 𝑅 𝑆 ∨ 𝐶 = 𝑆 ) ) |
| 11 | 4 | ne0d | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 12 | fiinfcl | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴 ) ) → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐵 ) | |
| 13 | 1 3 11 2 12 | syl13anc | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐵 ) |
| 14 | 5 13 | eqeltrd | ⊢ ( 𝜑 → 𝑆 ∈ 𝐵 ) |
| 15 | brcnvg | ⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵 ) → ( 𝐶 ◡ 𝑅 𝑆 ↔ 𝑆 𝑅 𝐶 ) ) | |
| 16 | 15 | bicomd | ⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵 ) → ( 𝑆 𝑅 𝐶 ↔ 𝐶 ◡ 𝑅 𝑆 ) ) |
| 17 | 4 14 16 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 𝑅 𝐶 ↔ 𝐶 ◡ 𝑅 𝑆 ) ) |
| 18 | 17 | orbi1d | ⊢ ( 𝜑 → ( ( 𝑆 𝑅 𝐶 ∨ 𝐶 = 𝑆 ) ↔ ( 𝐶 ◡ 𝑅 𝑆 ∨ 𝐶 = 𝑆 ) ) ) |
| 19 | 10 18 | mpbird | ⊢ ( 𝜑 → ( 𝑆 𝑅 𝐶 ∨ 𝐶 = 𝑆 ) ) |