This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | infltoreq.1 | |- ( ph -> R Or A ) |
|
| infltoreq.2 | |- ( ph -> B C_ A ) |
||
| infltoreq.3 | |- ( ph -> B e. Fin ) |
||
| infltoreq.4 | |- ( ph -> C e. B ) |
||
| infltoreq.5 | |- ( ph -> S = inf ( B , A , R ) ) |
||
| Assertion | infltoreq | |- ( ph -> ( S R C \/ C = S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infltoreq.1 | |- ( ph -> R Or A ) |
|
| 2 | infltoreq.2 | |- ( ph -> B C_ A ) |
|
| 3 | infltoreq.3 | |- ( ph -> B e. Fin ) |
|
| 4 | infltoreq.4 | |- ( ph -> C e. B ) |
|
| 5 | infltoreq.5 | |- ( ph -> S = inf ( B , A , R ) ) |
|
| 6 | cnvso | |- ( R Or A <-> `' R Or A ) |
|
| 7 | 1 6 | sylib | |- ( ph -> `' R Or A ) |
| 8 | df-inf | |- inf ( B , A , R ) = sup ( B , A , `' R ) |
|
| 9 | 5 8 | eqtrdi | |- ( ph -> S = sup ( B , A , `' R ) ) |
| 10 | 7 2 3 4 9 | supgtoreq | |- ( ph -> ( C `' R S \/ C = S ) ) |
| 11 | 4 | ne0d | |- ( ph -> B =/= (/) ) |
| 12 | fiinfcl | |- ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> inf ( B , A , R ) e. B ) |
|
| 13 | 1 3 11 2 12 | syl13anc | |- ( ph -> inf ( B , A , R ) e. B ) |
| 14 | 5 13 | eqeltrd | |- ( ph -> S e. B ) |
| 15 | brcnvg | |- ( ( C e. B /\ S e. B ) -> ( C `' R S <-> S R C ) ) |
|
| 16 | 15 | bicomd | |- ( ( C e. B /\ S e. B ) -> ( S R C <-> C `' R S ) ) |
| 17 | 4 14 16 | syl2anc | |- ( ph -> ( S R C <-> C `' R S ) ) |
| 18 | 17 | orbi1d | |- ( ph -> ( ( S R C \/ C = S ) <-> ( C `' R S \/ C = S ) ) ) |
| 19 | 10 18 | mpbird | |- ( ph -> ( S R C \/ C = S ) ) |