This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
inecmo2
Metamath Proof Explorer
Description: Equivalence of a double restricted universal quantification and a
restricted "at most one" inside a universal quantification.
(Contributed by Peter Mazsa , 29-May-2018) (Revised by Peter Mazsa , 2-Sep-2021)
Ref
Expression
Assertion
inecmo2
⊢ ∀ u ∈ A ∀ v ∈ A u = v ∨ u R ∩ v R = ∅ ∧ Rel ⁡ R ↔ ∀ x ∃ * u ∈ A u R x ∧ Rel ⁡ R
Proof
Step
Hyp
Ref
Expression
1
id
⊢ u = v → u = v
2
1
inecmo
⊢ Rel ⁡ R → ∀ u ∈ A ∀ v ∈ A u = v ∨ u R ∩ v R = ∅ ↔ ∀ x ∃ * u ∈ A u R x
3
2
pm5.32ri
⊢ ∀ u ∈ A ∀ v ∈ A u = v ∨ u R ∩ v R = ∅ ∧ Rel ⁡ R ↔ ∀ x ∃ * u ∈ A u R x ∧ Rel ⁡ R