This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute intersection over difference. (Contributed by BTernaryTau, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indifdi | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∖ ( 𝐴 ∩ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ) ) | |
| 2 | eldif | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) | |
| 3 | 2 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) ) |
| 4 | abai | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) ) ) | |
| 5 | 4 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) ) ) ) |
| 6 | an12 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶 ) ) ) | |
| 7 | eldif | ⊢ ( 𝑥 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ ( 𝐴 ∩ 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ ¬ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ) ) | |
| 8 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 9 | 8 | bicomi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 10 | imnan | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) | |
| 11 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) | |
| 12 | 10 11 | xchbinxr | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) ↔ ¬ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ) |
| 13 | 9 12 | anbi12i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∧ ¬ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ) ) |
| 14 | an21 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) ) ) ) | |
| 15 | 7 13 14 | 3bitr2i | ⊢ ( 𝑥 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ ( 𝐴 ∩ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐶 ) ) ) ) |
| 16 | 5 6 15 | 3bitr4i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) ↔ 𝑥 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ ( 𝐴 ∩ 𝐶 ) ) ) |
| 17 | 1 3 16 | 3bitri | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) ↔ 𝑥 ∈ ( ( 𝐴 ∩ 𝐵 ) ∖ ( 𝐴 ∩ 𝐶 ) ) ) |
| 18 | 17 | eqriv | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∖ ( 𝐴 ∩ 𝐶 ) ) |