This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute intersection over difference. (Contributed by BTernaryTau, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indifdi | |- ( A i^i ( B \ C ) ) = ( ( A i^i B ) \ ( A i^i C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( x e. ( A i^i ( B \ C ) ) <-> ( x e. A /\ x e. ( B \ C ) ) ) |
|
| 2 | eldif | |- ( x e. ( B \ C ) <-> ( x e. B /\ -. x e. C ) ) |
|
| 3 | 2 | anbi2i | |- ( ( x e. A /\ x e. ( B \ C ) ) <-> ( x e. A /\ ( x e. B /\ -. x e. C ) ) ) |
| 4 | abai | |- ( ( x e. A /\ -. x e. C ) <-> ( x e. A /\ ( x e. A -> -. x e. C ) ) ) |
|
| 5 | 4 | anbi2i | |- ( ( x e. B /\ ( x e. A /\ -. x e. C ) ) <-> ( x e. B /\ ( x e. A /\ ( x e. A -> -. x e. C ) ) ) ) |
| 6 | an12 | |- ( ( x e. A /\ ( x e. B /\ -. x e. C ) ) <-> ( x e. B /\ ( x e. A /\ -. x e. C ) ) ) |
|
| 7 | eldif | |- ( x e. ( ( A i^i B ) \ ( A i^i C ) ) <-> ( x e. ( A i^i B ) /\ -. x e. ( A i^i C ) ) ) |
|
| 8 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 9 | 8 | bicomi | |- ( ( x e. A /\ x e. B ) <-> x e. ( A i^i B ) ) |
| 10 | imnan | |- ( ( x e. A -> -. x e. C ) <-> -. ( x e. A /\ x e. C ) ) |
|
| 11 | elin | |- ( x e. ( A i^i C ) <-> ( x e. A /\ x e. C ) ) |
|
| 12 | 10 11 | xchbinxr | |- ( ( x e. A -> -. x e. C ) <-> -. x e. ( A i^i C ) ) |
| 13 | 9 12 | anbi12i | |- ( ( ( x e. A /\ x e. B ) /\ ( x e. A -> -. x e. C ) ) <-> ( x e. ( A i^i B ) /\ -. x e. ( A i^i C ) ) ) |
| 14 | an21 | |- ( ( ( x e. A /\ x e. B ) /\ ( x e. A -> -. x e. C ) ) <-> ( x e. B /\ ( x e. A /\ ( x e. A -> -. x e. C ) ) ) ) |
|
| 15 | 7 13 14 | 3bitr2i | |- ( x e. ( ( A i^i B ) \ ( A i^i C ) ) <-> ( x e. B /\ ( x e. A /\ ( x e. A -> -. x e. C ) ) ) ) |
| 16 | 5 6 15 | 3bitr4i | |- ( ( x e. A /\ ( x e. B /\ -. x e. C ) ) <-> x e. ( ( A i^i B ) \ ( A i^i C ) ) ) |
| 17 | 1 3 16 | 3bitri | |- ( x e. ( A i^i ( B \ C ) ) <-> x e. ( ( A i^i B ) \ ( A i^i C ) ) ) |
| 18 | 17 | eqriv | |- ( A i^i ( B \ C ) ) = ( ( A i^i B ) \ ( A i^i C ) ) |