This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: _om is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow _om as an inaccessible cardinal, but this choice allows to reuse our results for inaccessibles for _om .) (Contributed by Mario Carneiro, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omina | ⊢ ω ∈ Inacc |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 | ⊢ ∅ ∈ ω | |
| 2 | 1 | ne0ii | ⊢ ω ≠ ∅ |
| 3 | cfom | ⊢ ( cf ‘ ω ) = ω | |
| 4 | nnfi | ⊢ ( 𝑥 ∈ ω → 𝑥 ∈ Fin ) | |
| 5 | pwfi | ⊢ ( 𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin ) | |
| 6 | 4 5 | sylib | ⊢ ( 𝑥 ∈ ω → 𝒫 𝑥 ∈ Fin ) |
| 7 | isfinite | ⊢ ( 𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝑥 ∈ ω → 𝒫 𝑥 ≺ ω ) |
| 9 | 8 | rgen | ⊢ ∀ 𝑥 ∈ ω 𝒫 𝑥 ≺ ω |
| 10 | elina | ⊢ ( ω ∈ Inacc ↔ ( ω ≠ ∅ ∧ ( cf ‘ ω ) = ω ∧ ∀ 𝑥 ∈ ω 𝒫 𝑥 ≺ ω ) ) | |
| 11 | 2 3 9 10 | mpbir3an | ⊢ ω ∈ Inacc |