This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for inawina . (Contributed by Mario Carneiro, 8-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inawinalem | ⊢ ( 𝐴 ∈ On → ( ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | ⊢ ( 𝒫 𝑥 ≺ 𝐴 → 𝒫 𝑥 ≼ 𝐴 ) | |
| 2 | ondomen | ⊢ ( ( 𝐴 ∈ On ∧ 𝒫 𝑥 ≼ 𝐴 ) → 𝒫 𝑥 ∈ dom card ) | |
| 3 | isnum2 | ⊢ ( 𝒫 𝑥 ∈ dom card ↔ ∃ 𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 ) | |
| 4 | 2 3 | sylib | ⊢ ( ( 𝐴 ∈ On ∧ 𝒫 𝑥 ≼ 𝐴 ) → ∃ 𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 ) |
| 5 | 1 4 | sylan2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴 ) → ∃ 𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 ) |
| 6 | ensdomtr | ⊢ ( ( 𝑦 ≈ 𝒫 𝑥 ∧ 𝒫 𝑥 ≺ 𝐴 ) → 𝑦 ≺ 𝐴 ) | |
| 7 | 6 | ad2ant2l | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥 ) ∧ ( 𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴 ) ) → 𝑦 ≺ 𝐴 ) |
| 8 | sdomel | ⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑦 ≺ 𝐴 → 𝑦 ∈ 𝐴 ) ) | |
| 9 | 8 | ad2ant2r | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥 ) ∧ ( 𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴 ) ) → ( 𝑦 ≺ 𝐴 → 𝑦 ∈ 𝐴 ) ) |
| 10 | 7 9 | mpd | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥 ) ∧ ( 𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | 11 | canth2 | ⊢ 𝑥 ≺ 𝒫 𝑥 |
| 13 | ensym | ⊢ ( 𝑦 ≈ 𝒫 𝑥 → 𝒫 𝑥 ≈ 𝑦 ) | |
| 14 | sdomentr | ⊢ ( ( 𝑥 ≺ 𝒫 𝑥 ∧ 𝒫 𝑥 ≈ 𝑦 ) → 𝑥 ≺ 𝑦 ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( 𝑦 ≈ 𝒫 𝑥 → 𝑥 ≺ 𝑦 ) |
| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥 ) ∧ ( 𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴 ) ) → 𝑥 ≺ 𝑦 ) |
| 17 | 10 16 | jca | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥 ) ∧ ( 𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴 ) ) → ( 𝑦 ∈ 𝐴 ∧ 𝑥 ≺ 𝑦 ) ) |
| 18 | 17 | expcom | ⊢ ( ( 𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴 ) → ( ( 𝑦 ∈ On ∧ 𝑦 ≈ 𝒫 𝑥 ) → ( 𝑦 ∈ 𝐴 ∧ 𝑥 ≺ 𝑦 ) ) ) |
| 19 | 18 | reximdv2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴 ) → ( ∃ 𝑦 ∈ On 𝑦 ≈ 𝒫 𝑥 → ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
| 20 | 5 19 | mpd | ⊢ ( ( 𝐴 ∈ On ∧ 𝒫 𝑥 ≺ 𝐴 ) → ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) |
| 21 | 20 | ex | ⊢ ( 𝐴 ∈ On → ( 𝒫 𝑥 ≺ 𝐴 → ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
| 22 | 21 | ralimdv | ⊢ ( 𝐴 ∈ On → ( ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |