This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Imaginary part of a division. Related to immul2 . (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imdiv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ℑ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) / 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ∈ ℂ ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) ) | |
| 2 | 3anass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) ) | |
| 3 | 1 2 | bitr4i | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ∈ ℂ ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) |
| 4 | rereccl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℝ ) | |
| 5 | 4 | anim1i | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ∈ ℂ ) → ( ( 1 / 𝐵 ) ∈ ℝ ∧ 𝐴 ∈ ℂ ) ) |
| 6 | 3 5 | sylbir | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ( 1 / 𝐵 ) ∈ ℝ ∧ 𝐴 ∈ ℂ ) ) |
| 7 | immul2 | ⊢ ( ( ( 1 / 𝐵 ) ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( ℑ ‘ ( ( 1 / 𝐵 ) · 𝐴 ) ) = ( ( 1 / 𝐵 ) · ( ℑ ‘ 𝐴 ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ℑ ‘ ( ( 1 / 𝐵 ) · 𝐴 ) ) = ( ( 1 / 𝐵 ) · ( ℑ ‘ 𝐴 ) ) ) |
| 9 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 10 | divrec2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( ( 1 / 𝐵 ) · 𝐴 ) ) | |
| 11 | 10 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ℑ ‘ ( 𝐴 / 𝐵 ) ) = ( ℑ ‘ ( ( 1 / 𝐵 ) · 𝐴 ) ) ) |
| 12 | 9 11 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ℑ ‘ ( 𝐴 / 𝐵 ) ) = ( ℑ ‘ ( ( 1 / 𝐵 ) · 𝐴 ) ) ) |
| 13 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 14 | 13 | recnd | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 16 | 9 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 17 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) | |
| 18 | 15 16 17 | divrec2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ( ℑ ‘ 𝐴 ) / 𝐵 ) = ( ( 1 / 𝐵 ) · ( ℑ ‘ 𝐴 ) ) ) |
| 19 | 8 12 18 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ℑ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) / 𝐵 ) ) |