This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imaindm | ⊢ ( 𝑅 “ 𝐴 ) = ( 𝑅 “ ( 𝐴 ∩ dom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑦 ∈ V | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 1 2 | breldm | ⊢ ( 𝑦 𝑅 𝑥 → 𝑦 ∈ dom 𝑅 ) |
| 4 | 3 | pm4.71ri | ⊢ ( 𝑦 𝑅 𝑥 ↔ ( 𝑦 ∈ dom 𝑅 ∧ 𝑦 𝑅 𝑥 ) ) |
| 5 | 4 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑦 𝑅 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑦 ∈ dom 𝑅 ∧ 𝑦 𝑅 𝑥 ) ) |
| 6 | rexin | ⊢ ( ∃ 𝑦 ∈ ( 𝐴 ∩ dom 𝑅 ) 𝑦 𝑅 𝑥 ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑦 ∈ dom 𝑅 ∧ 𝑦 𝑅 𝑥 ) ) | |
| 7 | 5 6 | bitr4i | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑦 𝑅 𝑥 ↔ ∃ 𝑦 ∈ ( 𝐴 ∩ dom 𝑅 ) 𝑦 𝑅 𝑥 ) |
| 8 | 2 | elima | ⊢ ( 𝑥 ∈ ( 𝑅 “ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑦 𝑅 𝑥 ) |
| 9 | 2 | elima | ⊢ ( 𝑥 ∈ ( 𝑅 “ ( 𝐴 ∩ dom 𝑅 ) ) ↔ ∃ 𝑦 ∈ ( 𝐴 ∩ dom 𝑅 ) 𝑦 𝑅 𝑥 ) |
| 10 | 7 8 9 | 3bitr4i | ⊢ ( 𝑥 ∈ ( 𝑅 “ 𝐴 ) ↔ 𝑥 ∈ ( 𝑅 “ ( 𝐴 ∩ dom 𝑅 ) ) ) |
| 11 | 10 | eqriv | ⊢ ( 𝑅 “ 𝐴 ) = ( 𝑅 “ ( 𝐴 ∩ dom 𝑅 ) ) |