This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship involving union and indexed union. Exercise 25 of Enderton p. 33. (Contributed by NM, 25-Nov-2003) (Proof shortened by Mario Carneiro, 17-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iununi | ⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ( 𝐴 ∪ ∪ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | ⊢ ( 𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅ ) | |
| 2 | iunconst | ⊢ ( 𝐵 ≠ ∅ → ∪ 𝑥 ∈ 𝐵 𝐴 = 𝐴 ) | |
| 3 | 1 2 | sylbir | ⊢ ( ¬ 𝐵 = ∅ → ∪ 𝑥 ∈ 𝐵 𝐴 = 𝐴 ) |
| 4 | iun0 | ⊢ ∪ 𝑥 ∈ 𝐵 ∅ = ∅ | |
| 5 | id | ⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) | |
| 6 | 5 | iuneq2d | ⊢ ( 𝐴 = ∅ → ∪ 𝑥 ∈ 𝐵 𝐴 = ∪ 𝑥 ∈ 𝐵 ∅ ) |
| 7 | 4 6 5 | 3eqtr4a | ⊢ ( 𝐴 = ∅ → ∪ 𝑥 ∈ 𝐵 𝐴 = 𝐴 ) |
| 8 | 3 7 | ja | ⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) → ∪ 𝑥 ∈ 𝐵 𝐴 = 𝐴 ) |
| 9 | 8 | eqcomd | ⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) → 𝐴 = ∪ 𝑥 ∈ 𝐵 𝐴 ) |
| 10 | 9 | uneq1d | ⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) → ( 𝐴 ∪ ∪ 𝑥 ∈ 𝐵 𝑥 ) = ( ∪ 𝑥 ∈ 𝐵 𝐴 ∪ ∪ 𝑥 ∈ 𝐵 𝑥 ) ) |
| 11 | uniiun | ⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 | |
| 12 | 11 | uneq2i | ⊢ ( 𝐴 ∪ ∪ 𝐵 ) = ( 𝐴 ∪ ∪ 𝑥 ∈ 𝐵 𝑥 ) |
| 13 | iunun | ⊢ ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) = ( ∪ 𝑥 ∈ 𝐵 𝐴 ∪ ∪ 𝑥 ∈ 𝐵 𝑥 ) | |
| 14 | 10 12 13 | 3eqtr4g | ⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) → ( 𝐴 ∪ ∪ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) ) |
| 15 | unieq | ⊢ ( 𝐵 = ∅ → ∪ 𝐵 = ∪ ∅ ) | |
| 16 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 17 | 15 16 | eqtrdi | ⊢ ( 𝐵 = ∅ → ∪ 𝐵 = ∅ ) |
| 18 | 17 | uneq2d | ⊢ ( 𝐵 = ∅ → ( 𝐴 ∪ ∪ 𝐵 ) = ( 𝐴 ∪ ∅ ) ) |
| 19 | un0 | ⊢ ( 𝐴 ∪ ∅ ) = 𝐴 | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝐵 = ∅ → ( 𝐴 ∪ ∪ 𝐵 ) = 𝐴 ) |
| 21 | iuneq1 | ⊢ ( 𝐵 = ∅ → ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) = ∪ 𝑥 ∈ ∅ ( 𝐴 ∪ 𝑥 ) ) | |
| 22 | 0iun | ⊢ ∪ 𝑥 ∈ ∅ ( 𝐴 ∪ 𝑥 ) = ∅ | |
| 23 | 21 22 | eqtrdi | ⊢ ( 𝐵 = ∅ → ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) = ∅ ) |
| 24 | 20 23 | eqeq12d | ⊢ ( 𝐵 = ∅ → ( ( 𝐴 ∪ ∪ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) ↔ 𝐴 = ∅ ) ) |
| 25 | 24 | biimpcd | ⊢ ( ( 𝐴 ∪ ∪ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) → ( 𝐵 = ∅ → 𝐴 = ∅ ) ) |
| 26 | 14 25 | impbii | ⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ( 𝐴 ∪ ∪ 𝐵 ) = ∪ 𝑥 ∈ 𝐵 ( 𝐴 ∪ 𝑥 ) ) |