This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use intiin to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinun2 | ⊢ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∪ 𝐶 ) = ( 𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.32v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∨ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) | |
| 2 | elun | ⊢ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ) | |
| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ) |
| 4 | eliin | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) | |
| 5 | 4 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
| 6 | 5 | orbi2i | ⊢ ( ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∨ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
| 7 | 1 3 6 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 8 | eliin | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∪ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) ) | |
| 9 | 8 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∪ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) |
| 10 | elun | ⊢ ( 𝑦 ∈ ( 𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) | |
| 11 | 7 9 10 | 3bitr4i | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∪ 𝐶 ) ↔ 𝑦 ∈ ( 𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 12 | 11 | eqriv | ⊢ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∪ 𝐶 ) = ( 𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶 ) |