This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Preimage of an intersection. (Contributed by FL, 16-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinpreima | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) → ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) = ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) → Fun 𝐹 ) | |
| 2 | cnvimass | ⊢ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) ⊆ dom 𝐹 | |
| 3 | 2 | sseli | ⊢ ( 𝑦 ∈ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) → 𝑦 ∈ dom 𝐹 ) |
| 4 | 3 | adantl | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑦 ∈ dom 𝐹 ) |
| 5 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 6 | fvimacnvi | ⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) | |
| 7 | 6 | adantlr | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) |
| 8 | eliin | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ V → ( ( 𝐹 ‘ 𝑦 ) ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) ) | |
| 9 | 8 | biimpa | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ V ∧ ( 𝐹 ‘ 𝑦 ) ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 10 | 5 7 9 | sylancr | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 11 | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) | |
| 12 | 11 | ralbidv | ⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 13 | 12 | biimpa | ⊢ ( ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) ) |
| 14 | 1 4 10 13 | syl21anc | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) ) |
| 15 | eliin | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) | |
| 16 | 15 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) ) |
| 17 | 14 16 | sylibr | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) → 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) |
| 18 | simpll | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) → Fun 𝐹 ) | |
| 19 | 15 | biimpd | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 20 | 19 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) ) |
| 21 | 20 | adantl | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) ) |
| 22 | fvimacnvi | ⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) | |
| 23 | 22 | ex | ⊢ ( Fun 𝐹 → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) ) |
| 24 | 23 | ralimdv | ⊢ ( Fun 𝐹 → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) ) |
| 25 | 18 21 24 | sylc | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 26 | 5 8 | ax-mp | ⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 27 | 25 26 | sylibr | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) |
| 28 | r19.2zb | ⊢ ( 𝐴 ≠ ∅ ↔ ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) | |
| 29 | 28 | biimpi | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 30 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝐵 ) ⊆ dom 𝐹 | |
| 31 | 30 | sseli | ⊢ ( 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) → 𝑦 ∈ dom 𝐹 ) |
| 32 | 31 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) → 𝑦 ∈ dom 𝐹 ) |
| 33 | 29 32 | syl6 | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( ◡ 𝐹 “ 𝐵 ) → 𝑦 ∈ dom 𝐹 ) ) |
| 34 | 16 33 | biimtrid | ⊢ ( 𝐴 ≠ ∅ → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) → 𝑦 ∈ dom 𝐹 ) ) |
| 35 | 34 | adantl | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) → 𝑦 ∈ dom 𝐹 ) ) |
| 36 | 35 | imp | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) → 𝑦 ∈ dom 𝐹 ) |
| 37 | fvimacnv | ⊢ ( ( Fun 𝐹 ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) ) | |
| 38 | 18 36 37 | syl2anc | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) ) |
| 39 | 27 38 | mpbid | ⊢ ( ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) ∧ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) → 𝑦 ∈ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 40 | 17 39 | impbida | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) → ( 𝑦 ∈ ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) ↔ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) ) |
| 41 | 40 | eqrdv | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ≠ ∅ ) → ( ◡ 𝐹 “ ∩ 𝑥 ∈ 𝐴 𝐵 ) = ∩ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) |