This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed intersection of a class abstraction. (Contributed by NM, 6-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinab | ⊢ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | nfab1 | ⊢ Ⅎ 𝑦 { 𝑦 ∣ 𝜑 } | |
| 3 | 1 2 | nfiin | ⊢ Ⅎ 𝑦 ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } |
| 4 | nfab1 | ⊢ Ⅎ 𝑦 { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } | |
| 5 | 3 4 | cleqf | ⊢ ( ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) ) |
| 6 | abid | ⊢ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) | |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| 8 | eliin | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ { 𝑦 ∣ 𝜑 } ) ) | |
| 9 | 8 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ { 𝑦 ∣ 𝜑 } ) |
| 10 | abid | ⊢ ( 𝑦 ∈ { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) | |
| 11 | 7 9 10 | 3bitr4i | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } ) |
| 12 | 5 11 | mpgbir | ⊢ ∩ 𝑥 ∈ 𝐴 { 𝑦 ∣ 𝜑 } = { 𝑦 ∣ ∀ 𝑥 ∈ 𝐴 𝜑 } |