This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-idfu | ⊢ idfunc = ( 𝑡 ∈ Cat ↦ ⦋ ( Base ‘ 𝑡 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cidfu | ⊢ idfunc | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | ccat | ⊢ Cat | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑡 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑡 ) |
| 6 | vb | ⊢ 𝑏 | |
| 7 | cid | ⊢ I | |
| 8 | 6 | cv | ⊢ 𝑏 |
| 9 | 7 8 | cres | ⊢ ( I ↾ 𝑏 ) |
| 10 | vz | ⊢ 𝑧 | |
| 11 | 8 8 | cxp | ⊢ ( 𝑏 × 𝑏 ) |
| 12 | chom | ⊢ Hom | |
| 13 | 4 12 | cfv | ⊢ ( Hom ‘ 𝑡 ) |
| 14 | 10 | cv | ⊢ 𝑧 |
| 15 | 14 13 | cfv | ⊢ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) |
| 16 | 7 15 | cres | ⊢ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) |
| 17 | 10 11 16 | cmpt | ⊢ ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) |
| 18 | 9 17 | cop | ⊢ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 |
| 19 | 6 5 18 | csb | ⊢ ⦋ ( Base ‘ 𝑡 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 |
| 20 | 1 2 19 | cmpt | ⊢ ( 𝑡 ∈ Cat ↦ ⦋ ( Base ‘ 𝑡 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 ) |
| 21 | 0 20 | wceq | ⊢ idfunc = ( 𝑡 ∈ Cat ↦ ⦋ ( Base ‘ 𝑡 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 ) |