This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icomnfordt | ⊢ ( -∞ [,) 𝐴 ) ∈ ( ordTop ‘ ≤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) | |
| 2 | eqid | ⊢ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) | |
| 3 | eqid | ⊢ ran (,) = ran (,) | |
| 4 | 1 2 3 | leordtval | ⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) |
| 5 | letop | ⊢ ( ordTop ‘ ≤ ) ∈ Top | |
| 6 | 4 5 | eqeltrri | ⊢ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top |
| 7 | tgclb | ⊢ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ↔ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top ) | |
| 8 | 6 7 | mpbir | ⊢ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases |
| 9 | bastg | ⊢ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases → ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ⊆ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ⊆ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) |
| 11 | 10 4 | sseqtrri | ⊢ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ⊆ ( ordTop ‘ ≤ ) |
| 12 | ssun1 | ⊢ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ⊆ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) | |
| 13 | ssun2 | ⊢ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ⊆ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) | |
| 14 | eqid | ⊢ ( -∞ [,) 𝐴 ) = ( -∞ [,) 𝐴 ) | |
| 15 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( -∞ [,) 𝑥 ) = ( -∞ [,) 𝐴 ) ) | |
| 16 | 15 | rspceeqv | ⊢ ( ( 𝐴 ∈ ℝ* ∧ ( -∞ [,) 𝐴 ) = ( -∞ [,) 𝐴 ) ) → ∃ 𝑥 ∈ ℝ* ( -∞ [,) 𝐴 ) = ( -∞ [,) 𝑥 ) ) |
| 17 | 14 16 | mpan2 | ⊢ ( 𝐴 ∈ ℝ* → ∃ 𝑥 ∈ ℝ* ( -∞ [,) 𝐴 ) = ( -∞ [,) 𝑥 ) ) |
| 18 | eqid | ⊢ ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) | |
| 19 | ovex | ⊢ ( -∞ [,) 𝑥 ) ∈ V | |
| 20 | 18 19 | elrnmpti | ⊢ ( ( -∞ [,) 𝐴 ) ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ↔ ∃ 𝑥 ∈ ℝ* ( -∞ [,) 𝐴 ) = ( -∞ [,) 𝑥 ) ) |
| 21 | 17 20 | sylibr | ⊢ ( 𝐴 ∈ ℝ* → ( -∞ [,) 𝐴 ) ∈ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) |
| 22 | 13 21 | sselid | ⊢ ( 𝐴 ∈ ℝ* → ( -∞ [,) 𝐴 ) ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ) |
| 23 | 12 22 | sselid | ⊢ ( 𝐴 ∈ ℝ* → ( -∞ [,) 𝐴 ) ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) |
| 24 | 11 23 | sselid | ⊢ ( 𝐴 ∈ ℝ* → ( -∞ [,) 𝐴 ) ∈ ( ordTop ‘ ≤ ) ) |
| 25 | 24 | adantl | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ [,) 𝐴 ) ∈ ( ordTop ‘ ≤ ) ) |
| 26 | df-ico | ⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 27 | 26 | ixxf | ⊢ [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
| 28 | 27 | fdmi | ⊢ dom [,) = ( ℝ* × ℝ* ) |
| 29 | 28 | ndmov | ⊢ ( ¬ ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ [,) 𝐴 ) = ∅ ) |
| 30 | 0opn | ⊢ ( ( ordTop ‘ ≤ ) ∈ Top → ∅ ∈ ( ordTop ‘ ≤ ) ) | |
| 31 | 5 30 | ax-mp | ⊢ ∅ ∈ ( ordTop ‘ ≤ ) |
| 32 | 29 31 | eqeltrdi | ⊢ ( ¬ ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ [,) 𝐴 ) ∈ ( ordTop ‘ ≤ ) ) |
| 33 | 25 32 | pm2.61i | ⊢ ( -∞ [,) 𝐴 ) ∈ ( ordTop ‘ ≤ ) |