This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed interval is connected. (Contributed by Jeff Hankins, 17-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccconn | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Conn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccss2 | ⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 [,] 𝐵 ) ) | |
| 2 | 1 | rgen2 | ⊢ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 3 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 4 | reconn | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Conn ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 [,] 𝐵 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Conn ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝑥 [,] 𝑦 ) ⊆ ( 𝐴 [,] 𝐵 ) ) ) |
| 6 | 2 5 | mpbiri | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Conn ) |