This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed interval is connected. (Contributed by Jeff Hankins, 17-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccconn | |- ( ( A e. RR /\ B e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccss2 | |- ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> ( x [,] y ) C_ ( A [,] B ) ) |
|
| 2 | 1 | rgen2 | |- A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x [,] y ) C_ ( A [,] B ) |
| 3 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 4 | reconn | |- ( ( A [,] B ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn <-> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x [,] y ) C_ ( A [,] B ) ) ) |
|
| 5 | 3 4 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn <-> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x [,] y ) C_ ( A [,] B ) ) ) |
| 6 | 2 5 | mpbiri | |- ( ( A e. RR /\ B e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) |