This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the sum of two Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoscl | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hosval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ) | |
| 2 | 1 | 3expa | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ) |
| 3 | ffvelcdm | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑆 ‘ 𝐴 ) ∈ ℋ ) | |
| 4 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) | |
| 5 | 3 4 | anim12i | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ) → ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) ) |
| 6 | 5 | anandirs | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) ) |
| 7 | hvaddcl | ⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) → ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐴 ) ) ∈ ℋ ) |
| 9 | 2 8 | eqeltrd | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝐴 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝐴 ) ∈ ℋ ) |