This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the sum of two Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoscl | |- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S +op T ) ` A ) e. ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hosval | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S +op T ) ` A ) = ( ( S ` A ) +h ( T ` A ) ) ) |
|
| 2 | 1 | 3expa | |- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S +op T ) ` A ) = ( ( S ` A ) +h ( T ` A ) ) ) |
| 3 | ffvelcdm | |- ( ( S : ~H --> ~H /\ A e. ~H ) -> ( S ` A ) e. ~H ) |
|
| 4 | ffvelcdm | |- ( ( T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
|
| 5 | 3 4 | anim12i | |- ( ( ( S : ~H --> ~H /\ A e. ~H ) /\ ( T : ~H --> ~H /\ A e. ~H ) ) -> ( ( S ` A ) e. ~H /\ ( T ` A ) e. ~H ) ) |
| 6 | 5 | anandirs | |- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S ` A ) e. ~H /\ ( T ` A ) e. ~H ) ) |
| 7 | hvaddcl | |- ( ( ( S ` A ) e. ~H /\ ( T ` A ) e. ~H ) -> ( ( S ` A ) +h ( T ` A ) ) e. ~H ) |
|
| 8 | 6 7 | syl | |- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S ` A ) +h ( T ` A ) ) e. ~H ) |
| 9 | 2 8 | eqeltrd | |- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S +op T ) ` A ) e. ~H ) |